
Load Balancing For Presence Server Architecture
M. Lokesh Kumar Rao1
PG Scholar, Dept. of CSE

MITS Engineering college, JNTUA
Madanapalle, Andhra Pradesh, India

D. Kasi Viswanath2
Assistant Professor, Dept. of CSE
MITS Engineering college, JNTUA

Madanapalle, Andhra pradesh, India

Abstract- The importance of social network applications on
mobile devices is becoming more popular. The mobile
presence service is a vital component in social network
through which it handles every mobile user information, such
as the network address, present status and GPS location, and
also updates the user online buddies with the information
frequently. When plenty updates occur continuously more
number of messages are sent to the servers, this may lead to
scalability problem in large scale mobile presence services. To
address this, we use a server architecture known as
PresenceCloud, which supports large scale social network
applications. In day to day life, the number of mobile users of
social network applications is increasing rapidly, due to this
the response time from the server may be decreased by
getting more requests from the mobile users. In our proposed
method we are introducing an algorithm for Load balancing,
which allocate the work to the clusters of presence server. The
load balancing algorithm is Transaction-Least-Work-
Left(TLWL), used to allocate work to least values of the
servers. This algorithm reduces the response time by
distributing the requests to all other servers.

Keywords- Distributed Presence servers, cloud computing,
social networks, load balancing, mobile presence services

I. INTRODUCTION

Social network applications are rapidly growing and
increasing numbers of people to communicate and share
information on the Internet. At the same time the mobile
devices are also becoming more powerful and offering
high speed internet services. Due to this, users expecting
these social network services to be accessible on their
mobile devices. Thus, the importance of social network
applications on mobile devices is becoming more popular.

Because of the ubiquity of the internet, the mobile
devices and cloud computing environments providing
presence enabled applications. Examples of presence
enabled applications are WhatsApp [2], Facebook [3],
Twitter [4], Viber [5], Foursquare [6], Google Latitude [7],
Hike [8] and Mobile Instant Messaging (MIM) [10]. Social
network services are changing the ways on the internet in
which users engage with their friends. To interact with
their friends, the social network services can exploit the
information about the status of participants. They enable
participants to share live experiences instantly across the
world by using wireless mobile network technologies on
mobile devices. In the cloud computing environment, a
mobile presence service is an important segment of social
network services. The key functionality of a mobile
presence service is to keep up a breakthrough rundown of
data of all portable clients. This data incorporates insights

around a portable client's area, action, accessibility, gadget
capacity and inclination. In infx`ormal organization
benefits every client has a companion rundown or pal
rundown , which contains the contact points of interest of
all other versatile clients that they need to correspond with.
At whatever point client travels from one status the other,
the status of the portable client is consequently telecast
every individual on the companion list. Most vicinity
administrations use server cluster technology [9], to
maximize search speed and minimize the time of the
administrations.

To backing the tremendous number of clients around
the world, numerous web administrations has been
conveyed in circulated situations and distributed
computing applications. Presencecloud is an adaptable
server to server overlay structural engineering which
enhances the productivity of portable vicinity
administrations and we propose burden adjusting for
vicinity servers in Presencecloud to impart the heap
among all the vicinity servers. In the first place, we inspect
the server construction modeling of existing vicinity
benefits and present the mate rundown seek issue in
circulated vicinity structural engineering. At t hat
point we talk about the outline of Presencecloud, a
versatile server building design for portable vicinity
administrations. To encourage effective pal rundown
looking, Presencecloud sorts out vicinity servers into
majority based server to server construction modeling. We
investigate execution unpredictability of Presencecloud,
cross section based plan and DHT (Distributed Hash
Table) based plan. Through recreations, we additionally
analyze execution of three methodologies as far as number
of messages created, search satisfactoin and buddy notice
time.

II. THE PROBLEM STATEMENT

In this area, we portray the framework model and
bubby list search problem. Formally, we accept the
geologically circulated presence servers to structure a
server to server overlay system, G = (V , E), where V is the
situated of the presence server hubs and E is a gathering of
requested sets of V. Every hub ni ϵ V speaks to a vicinity
server and a component of E is a couple (ni , nj) ϵ E with
ni , nj ϵ V. The edge (ni , nj) is called a friendly edge of ni
and approaching edge of nj . Since the pair is requested, (ni
, nj) ϵ E is not equal to (nj , ni) ϵ E. We indicate a set of
the versatile clients in a vicinity benefit as U = { u1, ,
ui , . . . , um }, where 1 ≤ i ≤ m and m is the quantity of
versatile clients.

M. Lokesh Kumar Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7179-7183

www.ijcsit.com 7179

Definition: Buddy list Bi = { b1, b2,, bk } of client ui ϵ
U, is characterized as a subset of U, where 0 < k ≤ |u|.
Moreover, B is a symmetric connection, i.e., ui ϵ Bi.

A. Analysis of Naive Architecture of Mobile Presence
Service

To search for buddies of recently arrived client in a
design, we will gave a dissection of the normal rate of
messages produced of mobile presence services. Every
mobile client can join and leave the presence service
ramdomly, and every mobile client knows those clients
specifically appended to it. The likelihood for a mobile
client to append to a PS node can be uniform. We should
indicate λ the normal arriving rate of mobile clients in a
mobile presence service. We expect every PS node to have
infinite service capacity. Subsequently, η= ψ/n is the
average rate of mobile clients appending to a PS node,
where n is meant the number of PS nodes in a mobile
presence service. Let h signify the likelihood of having all
clients in the mate rundown of ui to be connecting to the
same PS node as ui. It is the likelihood of having no
compelling reason to send search messages when ui
appends to a PS node. In this way,

k =∏ ଵ୬|| = ݊ି||
The normal number of search messages produced by this
PS node for every unit time is then

(n-1) × (1- k) × η

For a sensible size of set Bi (e.g., |bi|≥ 3) and n ≥100, we
consider the normal number S of messages produced by
the n PS nodes for every unit time, then we have

S= n × (n - 1) × (1-k) × η

 = n × (n - 1) × (1-k) × ψ/n

 ≅ (n - 1) × ψ

Hence, as the number of PS nodes increase, both the
correspondence and the communication and the total CPU
processing overhead of presence servers also increase. At
the point when η increases significantly, is has a real effect
on the system overhead. To address this, we propose new
load balancing algorithm called Transaction-Least-Work-
Left (TLWL), used to allocate work to least values of the
servers. This algorithm reduces the response time by
distributing the requests to all other servers.

III. PRESECECLOUD SERVER OVERLAY

The construction algorithm of PresenceCloud server
overlay organizes the PS nodes into a server to server
overlay, which gives us a low diameter property. This
property needs only two hops to reach any PS nodes. This
construction algorithm of PresenceCloud maintains a PS

list of O(√n) for each preence server.

A mobile client can get to the web and make an
information association with Presencecloud by means of
Wifi or 3g services in the mobile internet. For control
message transmission the mobile client opens a TCP
connection to the presence server. After establishment of

control channel the mobile user client sends an appeal to
the associated PS hub for buddy list searching.

Fig. 1.Architecture for presence cloud

Fig. 2.PresenceCloud Server Overlay

PresenceCloud is focused on the idea of grid quorum
system [13], where a presence server node only maintain a

set of presence server nodes of size O(√݊), where where n
is the quantity of PS hubs In this framework, every PS hub
has a set of PS hubs, called PS list. The size of grid

quorum is [√݊] × [√݊]. The above fig. illustrate a sample
of Presencecloud, in which the lattice majority is situated
to [√9] × [√9]. In the fig. 2, the PS hub 6 has a PS list
{3,4,5,9} and the PS hub 1 has a PS list {2,3,4,7}. In fig. 2,
the PS rundown of hub 7 is the situated {1,4,8,9} and one
of PS hub 6 is the situated {3,4,5,9}. PS hub 6 can achieve
PS hub 7 by k set {4,9}, i.e., a route 6 → 4 → 7 or 6 → 9
→7.

IV. TRANSACTION-LEAST-WORK-LEFT ALGORITHM

To start the explanation of this load balancing
algorithm it should be expressed that concerning the
mixture showed in the topology used to join presence
servers, every presence server has a positive greatest
number of neighbors. For example in a framework in
which the presence servers are governed by cross mesh
topology, every presence server has, at most, four
neighbors. We can characterize a field for every presence
server the measures of which would focus every one of its
neighbor presence servers.

M. Lokesh Kumar Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7179-7183

www.ijcsit.com 7180

For the purpose of extra clarification, let us assume we
call the trademark "direction". As an illustration, in a
framework spoke to by fig. 3, for every presence server
there are at most four neighbors; in this way "direction" in
every presence server can procure four sums i.e. {up,
down, left, right} or {1, 2, 3, 4}.

Fig. 3. Particular measures of direction centered on the ps1
presence server

The idea of this process originated from the viewpoint
that a presence server might not be idle or over-burden yet
have both idle and over-burden presence servers
neighboring it and can accordingly serve to relate them; as
such the relater presence server can send the message that
it is not idle itself however has an idle neighbor presence
server to its neighboring presence servers.

The algorithm is as takes after; when a presence server
falls idle, it makes an impression on its neighbors. This
message incorporates the number of the idle presence
server, the message number, a counter and a field to focus
the legitimacy of the message. The number of the presence
server is, indeed, its id. Any presence server may fall idle
many times; to focus the legitimacy of a message i.e. it is
not a long ago lapsed message, a message number is
utilized. "Counter" is a trademark to which one unit is
included each one time a message is passed on starting
with one presence server then onto the next and decides the
separation of the message from the first idle presence
server from which it began.

The nearest recipient presence server spares the
message whole with all its connected data and as to the
route from which it came. On the off chance that a
presence server achieves underloaded level it browses the
got messages of nearest presence servers that which has the
most priority level (i.e. the closest) and sends the message
to its own particular nearest presence servers.

The new load balancing algorithm
If presence server p is idle
if last_msg_num(p, 2)=0 then
last_msg_num(p, 1):=last_msg_num(p, 1)+1;
last_msg_num(p, 2):=1;
for i:=1 to d do
send message to direction i of presence server p(p,
last_message_number(p, 1), 1, 1);

end for
end if
If presence server p is underloaded
min:=∞;
walk:=∞;
for i:=1 to d do
if receive_msg(p, i, 4)=1 and receive_msg(p, i, 3) < walk
and last_msg_num(receive_msg(p, i, 1),1)=receive_msg(p,
i, 2) and last_msg_num(receive_msg(p, i, 1), 2)=1 then
walk:=receive_msg(p, i, 3);
min:=i;
end if
end for
if min≠∞ then
for i:=1 to d do
if i≠min then
send message to direction i of presence server p
(receive_message(p, min, 1), receive_msg(p, min, 2),
receive_msg(p, min, 3)+1, 1);
end if
end for
end if
If presence server p is overloaded
if match(p)=0 then
min:=∞;
walk:=∞;
for i:=1 to d do
if receive_msg(p, i, 4) = 1 and receive_msg(p, i,3)<walk
and last_msg_num(receive_msg(p,i, 1), 1) =
receive_msg(p, i, 2) and
last_message_number(receive_msg(p, i, 1), 2) =1 then
walk:=receive_msg(p, i, 3);
min:=i;
end if
end for
if min≠∞ then
p1:=p;
p2:=get _presence serverid(p, min);
idle_presence server:=receive_msg(p, min, 1);
d1:=min;
for i:=1 to walk do
receive_msg(p1, d1, 4):=0;
path(p, idle_presence server, i):=d1;
if i≠walk then
p1:=p2;
p2:=−1;
for j:=1 to d do
if receive_msg(p1, j, 4)=1 and receive_message(p1, j,1) =
idle_presence server and
last_message_number(idle_presence server, 1) =
receive_msg(p1, j, 2) and last_msg_num(idle_presence
server, 2) = 1 then
d1:=j;
p2:=get _presenceserverid(p1, d1);
end if
end for
end if
if p2=−1 then
break;
end if

M. Lokesh Kumar Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7179-7183

www.ijcsit.com 7181

end for
if p2≠−1 and last_msg_num(idle_presence server,2)=1
then
last_msg_num(idle_presence server, 2):=2;
match(p):=idle_presence server;
end if
end if
end if

Inevitably an over-burden presence server browses
among its gotten messages the unified with the most
priority in order to send an allotment of its heap to the
presence server whence the message began.

In this pseudo-code, d demonstrates the maximum
number of neighbors that any presence server with in a
framework typifying a particular convention can have; n is
the quantity of presence servers in the framework. The
last_msg_num exhibit of a n*2 cluster in which
last_msg_num(p, 1) demonstrates the quantity of the last
message sent by presence server p when out of gear status
and last_msg_num(p, 2) demonstrates the current status of
the message; on the off chance that it be zero the message
is no more substantial, if 1 the message is legitimate and if
2 it shows that the message has been gotten by an over-
burden presence server that it prepared to exchange burden
to the idle presence server. After burden exchange the
amount of this field will equivalent zero.

V. PERFORMANCE EVALUTION

The related architectures related to our implementation
are PresenceCloud, Chord and a Mesh based presence
server architecture. We can perform tests up to 20000 users
and 2048 Ps nodes by using packet level simulator. To
simulate internet networks we apply King topology [16]
and Brite topology [17].

The three metrics that are used to measure the
performance of server architecture are 1) Total searching
messages: This represent the aggregate number of
messages exchanged between question initiator and
alternate PS hubs. 2) Average searching messages per
arrived user: the quantity of looking messages utilized for
every arrived client. 3) Average searching latency: This
speaks to that normal pal looking time for a portable client.

Fig. 4.The normal message transmissions for every seeking
operation

The aggregate number of seeking messages is
commanded by the client user arrival rate (η) essentially.
Chord and mesh-base require substantial number of
messages for seeking buddy lists where as PresenceCloud
requires few messages. The normal number of seeking
message transmissions is free of client entry design.
Expanding the rate of client entry design does not expand
the normal number of seeking message transmissions.

Fig. 5.Normal seeking messages versus number of PS hubs

The above Fig. plots the normal number of seeking
messages for every looking operation in different number
of PS hubs. The normal message transmissions of
Presencecloud increments bit by bit with the quantity of
servers. Then again, the normal message transmissions of

PresenceCloud is bounded by 4 × √n. Mesh-based

performs poor than other two designs, it requires O(√n)
searching complexity. The quantity of normal message
transmissions develops gradually with the system measure
in Presencecloud and Chord based designs.

VI. CONCLUSION

In this, we have presented a novel method to load
balancing for presence servers. The proposed algorithm
reduces the response time by distributing the messages to
all other servers and improves the throughput of the
system.

REFERENCES
[1] Chi-Jen Wu, Jan-Ming Ho, “A Scalable Server Architecture for

Mobile Presence Services in Social Network Applications”, IEEE
TRANSACTIONS ON MOBILE COMPUTING,Vol. 12, No. 2,
Feb 2013.

[2] Whatsapp, http://www.whatsapp.com
[3] Facebook, http://www.facebook.com
[4] Twitter, http://www.twitter.com
[5] Viber, http://www.viber.com
[6] Foursquare, http://www.foursquare.com
[7] Google Latitude,

http://www.google.com/intl/enus/latitude/intro.html
[8] Hike, http://www.hike.com
[9] R.B. Jennings, E.M. Nahum, D.P. Olshefski, D. Saha, Z.-Y. Shae,

and C. Waters, “A Study of Internet Instant Messaging and

M. Lokesh Kumar Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7179-7183

www.ijcsit.com 7182

ChatProtocols,” IEEE Network, vol. 20, no. 6, pp. 16-21,
July/Aug.2006.

[10] Z. Xiao, L. Guo, and J. Tracey, “Understanding Instant Messaging
Traffic Characteristics” Proc. IEEE 27th Int’l Conf. Distributed
Computing Systems (ICDCS), 2007.

[11] K. Singh and H. Schulzrinne, “Peer-to-Peer Internet Telephony
Using SIP,” Proc. ACM Int’l Workshop Network and Operating
Systems Support for Digital Audio and Video (NOSSDVA), 2005.

[12] A. Houri, E. Aoki, S. Parameswar, T. Rang, V. Singh, and H.
Schulzrinne, “Presence Interdomain Scaling Analysis for SIP/
SIMPLE,” IETF Internet draft, 2009.

[13] M. Maekawa, “A √n Algorithm for Mutual Exclusion in
Decentralized Systems,” ACM Trans. Computer Systems, vol. 3,pp.
145-159, 1985.

[14] Berger, E., Browne, J., 1999. Scalable Load Distribution and Load
Balancing for Dynamic Parallel Programs. Proc. Int. Workshop on
Cluster-Based Computing, p.1-5.

[15] Lüling, R., Monien, B., Ramme, F., 1991. A Study on Dynamic
Load Balancing Algorithms. Proc. 3rd IEEE SPDP, p.686-689.

[16] K.P. Gummadi, S. Saroiu, and S.D. Gribble, “King: Estimating
Latency between Arbitrary Internet End Hosts,”Proc. Second ACM
SIGCOMM Workshop Internet measurment (IMW),2002

[17] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An
Approach to Universal Topology Generation,”Proc. ACM Ninth
Int’l Symp. Modeling, Analysis and Simulation of Computer and
Telecomm. Systems (MASCOTS),2001.

[18] R. Cox, A. Muthitacharoen, and R.T. Morris, “Serving DNS Using a
Peer-to-Peer Lookup Service,”Proc. First Int’l Workshop Peer-
toPeer Systems (IPTPS),2002.

[19] V. Ramasubramanian and E.G. Sirer, “Beehive: 0(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-Peer
Overlays,”Proc. USENIX First Conf. Symp. Networked Systems
Design and Implementation (NSDI),2004.

[20] A. Abdul-Rahman and S. Hailes, “A Distributed Trust Model,”
Proc. Workshop New Security Paradigms,1997.

[21] P. Anick, “Using Terminological Feedback for Web Search
Refinement: A Log-Based Study,”Proc. ACM SIGIR Conf.
Research and Development in Information Retrieval,pp. 88-95,
2003.

[22] M. Steiner, T. En-Najjary, and E.W. Biersack, “Long Term Study of
Peer Behavior in the KAD DHT,”IEEE/ACM Trans. Networking,
vol. 17, no. 5, pp. 1371-1384, Oct. 2009.

[23] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H.Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet,” IEEE/ACM Tran. Networking, vol. 11, no. 1, pp. 17-
32, Feb. 2003.

[24] P. Saint-Andre, “Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence Describes Instant
Messaging (IM), the Most Common Application of XMPP,” IETF
RFC 3921, 2004.

[25] Osman, A., Ammar, H., 2002.Dynamic load balancing strategies for
parallel computers. Sci. Ann. J. Cuza Univ., 11:110-120.

[26] Garcia, T., Semé, D., 2006. A Load Balancing Technique for Some
Coarse-Grained Multicomputer Algorithms. 21st Int. Conf. on
Computers and Their Applications, p.301- 306.

[27] Grama, A., Gupta, A., Karypis, G., Kumar, V., 2003. Introduction to
Parallel Computing (2nd Ed.). Addison Wesley, USA.

[28] Peer-to-Peer Session Initiation Protocol IETF Working Group,
http://www.ietf.org/html.charters/p2psip-charter.html, 2012.

[29] P. Saint-Andre, “Interdomain Presence Scaling Analysis for the
Extensible Messaging and Presence Protocol (XMPP),” IETF
Internet draft, 2008.

[30] P. Bellavista, A. Corradi, and L. Foschini, “IMS-Based Presence
Service with Enhanced Scalability and Guaranteed QoS for
Interdomain Enterprise Mobility,” IEEE Wireless Comm., vol. 16,
no. 3, pp. 16-23, June 2009.

[31] X. Chen, S. Ren, H. Wang, and X. Zhang, “SCOPE: Scalable
Consistency Maintenance in Structured P2P Systems,”Proc. IEEE
INFOCOM,2005.

[32] SIP for Instant Messaging and Presence Leveraging Extensions
IETF Working Group, http://www.ietf.org/html.charters/ simple-
charter.html, 2012.

M. Lokesh Kumar Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7179-7183

www.ijcsit.com 7183

